Réduction : que les théorèmes

 \mathbb{E} est un \mathbb{K} espace vectoriel.

Sous-espaces stables par un endomorphisme ou une matrice

- Si F stable par f, alors f_F induit un endomorphisme de F et réciproquement.
- Une droite stable par f est une droite engendrée par un vecteur propre de f.
- Si $E = F \oplus G$ et si $\mathscr B$ est une base de E adaptée à cette décomposition, F est stable par $f \Leftrightarrow \operatorname{Mat}_{\mathscr B}(f) = \left(\begin{array}{cc} A & C \\ 0 & B \end{array} \right)$.

Théorème. Soit $(f,g) \in (\mathcal{L}(E))^2$. Si $f \circ g = g \circ f$, alors $\mathrm{Im}(f)$, $\mathrm{Ker}(f)$ et plus généralement tous les $\mathrm{Ker}(f-\lambda \mathrm{Id}_E)$, $\lambda \in \mathbb{K}$, sont stables par g.

Sommes de plusieurs sous-espaces, sommes directes

Théorème. $\sum_{k=1}^{p} F_k$ est un sous-espace vectoriel de (E,+,.).

Théorème. 1) La somme $\sum_{k=1}^p F_k$ est directe $\Leftrightarrow \forall i \in [1,p], \ F_i \cap \sum_{j \neq i} F_j = \{0\}.$

 $\textbf{2)} \ \mathrm{La\ somme}\ \sum_{k=1}^p F_k\ \mathrm{est\ directe} \Leftrightarrow \forall i \in [\![2,p]\!],\ F_i \cap \sum_{j < i} F_j = \{0\}.$

Théorème. On suppose de plus que $\dim(E) < +\infty$.

1) dim
$$\left(\bigoplus_{1 \leqslant i \leqslant p} F_i\right) = \sum_{i=1}^p \dim(F_i)$$

 $\mathbf{2)} \, \dim \left(\sum_{i=1}^p F_i \right) \leqslant \sum_{i=1}^p \dim \left(F_i \right) \, \operatorname{avec} \, \operatorname{\acute{e}galit\acute{e}} \, \operatorname{si} \, \operatorname{et} \, \operatorname{seulement} \, \operatorname{si} \, \operatorname{la} \, \operatorname{somme} \, \sum_{i=1}^p F_i \, \operatorname{est} \, \operatorname{directe}.$

$$\textbf{3)} \ E = \bigoplus_{1 \leqslant i \leqslant p} F_i \Leftrightarrow \dim(E) = \sum_{i=1}^p \dim{(F_i)}.$$

Théorème. Pour $i \in [\![1,p]\!]$, soit $\mathscr{B}_i = (e_{1,i},e_{2,i},\ldots,e_{n_i,i})$ une base de F_i puis $\mathscr{B} = (e_{1,1},e_{2,1},\ldots,e_{n_1,1},e_{1,2},e_{2,2},\ldots,e_{n_2,2},\ldots,e_{1,p},e_{2,p},\ldots,e_{n_p,p})$.

Alors, $E = \bigoplus_{1 \leqslant i \leqslant p} F_i \Leftrightarrow \mathscr{B}$ est une base de E.

Théorème. Soient F_1, \ldots, F_p, p sous-espaces supplémentaires d'un \mathbb{K} -espace vectoriel E. Soit $(f,g) \in \mathcal{L}(E)$. Alors

- 1) $f = 0 \Leftrightarrow \forall i \in [1, p], f_{/F_i} = 0.$
- 2) $f = g \Leftrightarrow \forall i \in [1, p], f_{/F_i} = g_{/F_i}$.

Valeurs propres, vecteurs propres, sous-espaces propres

Théorème. Un endomorphisme d'un \mathbb{C} -espace de dimension finie non nulle $\mathfrak n$ a au au moins une valeur propre. Une matrice carrée a au moins une valeur propre dans \mathbb{C} .

Théorème. Un endomorphisme d'un espace de dimension finie $\mathfrak n$ a au plus $\mathfrak n$ valeurs propres. Une matrice carrée de format $\mathfrak n$ a au plus $\mathfrak n$ valeurs propres.

• $0 \in \operatorname{Sp}(f) \Leftrightarrow \exists x \neq 0 / f(x) = 0 \Leftrightarrow \operatorname{Ker}(f) \neq \{0\} \Leftrightarrow f \text{ non injectif (non bijectif si de plus } 1 \leqslant \dim(E) < +\infty).$

$$\begin{split} \lambda \in \operatorname{Sp}(f) &\Leftrightarrow \exists x \neq 0 / \ f(x) = \lambda x \Leftrightarrow \operatorname{Ker}(f - \lambda \operatorname{Id}) \neq \{0\} \Leftrightarrow f - \lambda \operatorname{Id} \ \operatorname{non injectif (non bijectif si de plus } 1 \leqslant \dim(E) < +\infty). \\ 0 \in \operatorname{Sp}(A) &\Leftrightarrow \exists X \neq 0 / \ AX = 0 \Leftrightarrow \operatorname{Ker}(A) \neq \{0\} \Leftrightarrow A \notin \operatorname{GL}_n(\mathbb{K}). \end{split}$$

 $\lambda \in \operatorname{Sp}(A) \Leftrightarrow \exists X \neq 0 / \ AX = \lambda X \Leftrightarrow \operatorname{Ker}\left(A - \lambda I_n\right) \neq \{0\} \Leftrightarrow A - \lambda I_n \notin GL_n(\mathbb{K}).$ • Si $f(x) = \lambda x$. Alors, $\forall k \in \mathbb{N}$, $f^k(x) = \lambda^k x$. Si $AX = \lambda X$. Alors, $\forall k \in \mathbb{N}$, $A^k X = \lambda^k X$.

Théorème. Une famille de vecteurs propres associés à des valeurs propres deux à deux distinctes est libre.

Théorème. $E_{\lambda}(f) = \text{Ker}(f - \lambda Id_{E})$ est un sous-espace de E. $E_{\lambda}(A) = \text{Ker}(A - \lambda I_n)$ est un sous-espace de $\mathcal{M}_{n,1}(\mathbb{K})$.

THÉORÈME. Une somme d'un nombre fini de sous-espaces propres associés à des valeurs propres deux à deux distinctes est directe.

Endomorphismes ou matrices diagonalisables

THÉORÈME. Soient E un K-espace vectoriel de dimension finie non nulle puis f un endomorphisme de E. f est diagonalisable si et seulement si E est somme directe des sous-espaces propres de f.

THÉORÈME. Soient E un K-espace vectoriel de dimension finie n non nulle puis f un endomorphisme de E. Soient λ_1 , \ldots , $\lambda_{\mathfrak{p}}$, les éventuelles valeurs propres deux à deux distinctes de f. Pour $\mathfrak{i} \in [\![1,\mathfrak{p}]\!]$, on pose $\mathfrak{n}_{\mathfrak{i}} = \dim{(E_{\lambda_{\mathfrak{i}}})}$.

Alors, f est diagonalisable si et seulement si $\sum_{i=1}^{n} n_i = n$.

THÉORÈME. Soient E un K-espace vectoriel de dimension finie \mathfrak{n} non nulle puis $f \in \mathscr{L}(E)$.

Si f a n valeurs propres deux à deux distinctes, alors f est diagonalisable. De plus, dans ce cas, les sous-espaces propres sont des droites vectorielles.

Polynôme caractéristique

Théorème. Si $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, alors $\chi_A = (X - \lambda_1) \ldots (X - \lambda_n)$.

Théorème. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

$$\lambda \in \operatorname{Sp}(A) \Leftrightarrow \chi_A(\lambda) = 0.$$

Théorème. Soit $A \in \mathscr{M}_n(\mathbb{K})$. $\deg(\chi_A) = n$ et $\mathrm{dom}(\chi_A) = 1$ $(\chi_A$ est unitaire de degré n).

THÉORÈME. Soit $A \in \mathcal{M}_n(\mathbb{K})$. A admet au plus n valeurs propres (en tenant compte de l'ordre de multiplicité).

Si de plus $\mathbb{K}=\mathbb{C}$ ou si $\mathbb{K}=\mathbb{R}$ et si χ_A est scindé sur $\mathbb{K},$ alors A admet exactement \mathfrak{n} valeurs propres (en tenant compte de l'ordre de multiplicité).

THÉORÈME. Soit $A \in \mathcal{M}_n(\mathbb{K})$. $\chi_A = X^n - (\operatorname{Tr}(A))X^{n-1} + \ldots + (-1)^n \operatorname{det}(A)$.

En particulier, pour $A \in \mathcal{M}_2(\mathbb{K})$, $\chi_A = X^2 - (\operatorname{Tr}(A)) X + \det(A)$.

Théorème. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit $(\lambda_1, \ldots, \lambda_n)$ la famille des valeurs propres de A.

$$\chi_A = X^n - \sigma_1 X^{n-1} + \ldots + (-1)^k \sigma_k X^{n-k} + \ldots + (-1)^n \det(A) \sigma_n$$

 $\chi_A = X^n - \sigma_1 X^{n-1} + \ldots + (-1)^k \sigma_k X^{n-k} + \ldots + (-1)^n \det(A) \sigma_n.$ où $\sigma_1 = \sum_{k=1}^n \lambda_k$, $\sigma_n = \prod_{k=1}^n \lambda_k$ et plus généralement, pour $k \in [\![1,n]\!]$, $\sigma_k = \sum_{1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant n} \lambda_{i_1} \ldots \lambda_{i_k}.$

En particulier,

$$\operatorname{Tr}(A) = \lambda_1 + \ldots + \lambda_n \text{ et } \det(A) = \lambda_1 \times \ldots \times \lambda_n.$$

Théorème. $\forall A \in \mathcal{M}_n(\mathbb{K}), \chi_{t_A} = \chi_A$.

$$\forall (A, B) \in (\mathscr{M}_n(\mathbb{K}))^2, \chi_{AB} = \chi_{BA}.$$

Deux matrices semblables ont même polynôme caractéristique.

Diagonalisation

Théorème. On note $o(\lambda)$ l'ordre de multiplicité d'une valeur propre λ .

- Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie non nulle. Soit λ une (éventuelle) valeur propre de f. Alors, $1 \leq \dim (E_{\lambda}(f)) \leq o(\lambda)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit λ une (éventuelle) valeur propre de A. Alors, $1 \leq \dim(E_{\lambda}(A)) \leq o(\lambda)$.

Théorème. Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie non nulle. Soit λ une (éventuelle) valeur propre simple de f. Alors, dim $(E_{\lambda}(f)) = 1$.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit λ une (éventuelle) valeur propre simple de A. Alors, dim $(E_{\lambda}(A)) = 1$.

Ainsi, le sous-espace propre associé à une valeur propre simple est toujours une droite vectorielle.

Théorème. (Une condition nécessaire et suffisante de diagonalisablité)

- Soit f un endomorphisme d'un K-espace vectoriel de dimension finie non nulle.
- f est diagonalisable si et seulement si χ_f est scindé sur $\mathbb K$ et l'ordre de multiplicité de chaque valeur propre est égal à la dimension du sous-espace propre correspondant.
- Soit $A \in \mathscr{M}_n(\mathbb{K})$.

A est diagonalisable si et seulement si χ_A est scindé sur \mathbb{K} et l'ordre de multiplicité de chaque valeur propre est égal à la dimension du sous-espace propre correspondant.

Théorème. (une condition suffisante de diagonalisablité)

- \bullet Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie \mathfrak{n} non nulle. Si f a \mathfrak{n} valeurs propres simples, alors f est diagonalisable. De plus, les sous-espaces propres de f sont des droites vectorielles.
- \bullet Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A a n valeurs propres simples, alors A est diagonalisable. De plus, les sous-espaces propres de A sont des droites vectorielles.

Endomorphismes ou matrices trigonalisables

Théorème. Si
$$T = \begin{pmatrix} \lambda_1 & \times & \dots & \times \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
, alors $\chi_T = (X - \lambda_1) \dots (X - \lambda_n)$.

Théorème. (une condition nécessaire et suffisante de trigonalisablité)

- \bullet Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie \mathfrak{n} non nulle. f est trigonalisable si et seulement si χ_f est scindé sur \mathbb{K} .
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. A est trigonalisable si et seulement si χ_A est scindé sur \mathbb{K} .

En particulier,

- \bullet Tout endomorphisme d'un $\mathbb{C}\text{-espace}$ de dimension finie non nulle est trigonalisable.
- Toute matrice à coefficients dans C est trigonalisable.

Quand on a triangulé et donc écrit A sous la forme $A = PTP^{-1}$, on retrouve sur la diagonale de T la famille des valeurs propres de A.

Théorème. Soit
$$A \in \mathscr{M}_n(\mathbb{C})$$
. Si $\mathrm{Sp}(A) = (\lambda_1, \dots, \lambda_n)$, alors

$$\forall k \in \mathbb{N}^*, \operatorname{Sp}(A^k) = (\lambda_1^k, \dots, \lambda_n^k).$$

Soit $A \in GL_n(\mathbb{C})$. Si $Sp(A) = (\lambda_1, \dots, \lambda_n)$, alors

$$\forall k \in \mathbb{Z}, \; \operatorname{Sp}\left(A^{k}\right) = \left(\lambda_{1}^{k}, \dots, \lambda_{n}^{k}\right).$$

Théorème. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Si $\mathrm{Sp}(A) = (\lambda_1, \dots, \lambda_n)$, alors

$$\forall k \in \mathbb{N}^*, \operatorname{Tr}(A^k) = \lambda_1^k + \ldots + \lambda_n^k.$$

Soit $A \in GL_n(\mathbb{C})$. Si $Sp(A) = (\lambda_1, \dots, \lambda_n)$, alors

$$\forall k \in \mathbb{Z}, \text{ Tr}(A^k) = \lambda_1^k + \ldots + \lambda_n^k.$$

Polynômes d'endomorphismes, polynômes de matrices

L'algèbre des polynômes en f (ou en A)

Théorème.

- Soit E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. $\forall (P,Q) \in (\mathbb{K}[X])^2, (P+Q)(f) = P(f) + Q(f);$ $\forall P \in \mathbb{K}[X], \ \forall \lambda \in \mathbb{K}, \ (\lambda P)(f) = \lambda P(f);$ $\forall (P,Q) \in (\mathbb{K}[X])^2, \ (P \times Q)(f) = P(f) \circ Q(f).$
- $$\begin{split} \bullet & \operatorname{Soit} A \in \mathscr{M}_n(\mathbb{K}). \\ \forall (P,Q) \in (\mathbb{K}[X])^2, \ (P+Q)(A) = P(A) + Q(A) \, ; \\ \forall P \in \mathbb{K}[X], \ \forall \lambda \in \mathbb{K}, \ (\lambda P)(A) = \lambda P(A) \, ; \\ \forall (P,Q) \in (\mathbb{K}[X])^2, \ (P \times Q)(A) = P(A) \times Q(A). \end{split}$$

Par exemple, si $P = (X - 1)^2(X + 2) + 3X - 1$, alors $P(f) = (f - Id_E)^2 \circ (f + 2Id_E) + 3f - Id_E$.

THÉORÈME.

- Soit $f \in \mathcal{L}(E)$. $\mathbb{K}[f]$ est une sous-algèbre commutative de l'algèbre ($\mathcal{L}(E), +, ., \circ$). De plus, l'application $\varphi_f : \mathbb{K}[X] \to \mathcal{L}(E)$ est un morphisme d'algèbres. P $\mapsto P(f)$
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. $\mathbb{K}[A]$ est une sous-algèbre commutative de l'algèbre $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$. De plus, l'application $\phi_A : \mathbb{K}[X] \to \mathcal{M}_n(\mathbb{K})$ est un morphisme d'algèbres. $P \mapsto P(A)$

Théorème. Deux polynômes en f commutent.

Commutant d'un endomorphisme ou d'une matrice

Théorème.

- Soit E un K-espace vectoriel puis $f \in \mathcal{L}(E)$. C(f) est une sous-algèbre de l'algèbre $(\mathcal{L}(E), +, ., \circ)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. C(A) est une sous-algèbre de l'algèbre $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$.

Théorème.

- Soit E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. $\mathbb{K}[f]$ est une sous-algèbre commutative de l'algèbre $(C(f), +, ., \circ)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. $\mathbb{K}[A]$ est une sous-algèbre commutative de l'algèbre $(C(A), +, ., \times)$.

Polynômes annulateurs d'un endomorphisme (ou d'une matrice)

Théorème.

- Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. L'ensemble des polynômes $P \in \mathbb{K}[X]$ tels que P(f) = 0 est un idéal de l'anneau $(\mathbb{K}[X], +, \times)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. L'ensemble des polynômes $P \in \mathbb{K}[X]$ tels que P(A) = 0 est un idéal de l'anneau $(\mathbb{K}[X], +, \times)$.

Polynôme minimal d'un endomorphisme (ou d'une matrice)

Théorème.

- ullet Soit E un \mathbb{K} -espace vectoriel de dimension finie puis $f\in \mathscr{L}(E)$. Il existe au moins un polynôme non nul P tel que P(f)=0.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Il existe au moins un polynôme non nul P tel que P(A) = 0.

Théorème.

 \bullet Soit E un K-espace vectoriel de dimension finie puis $f \in \mathcal{L}(E)$. Il existe un polynôme unitaire P_0 et un seul tel que

$$\operatorname{Ker}(\phi_f) = P_0 \times \mathbb{K}[X].$$

 \bullet Soit $A\in \mathscr{M}_n(\mathbb{K}).$ Il existe un polynôme unitaire P_0 et un seul tel que

$$\operatorname{Ker}(\phi_A) = P_0 \times \mathbb{K}[X].$$

Polynôme minimal et polynôme caractéristique d'un endomorphisme induit

Théorème.

Soient E un \mathbb{K} -espace vectoriel de dimension finie puis $f \in \mathcal{L}(E)$. Soient F un sous-espace vectoriel de E stable par f puis f_F l'endomorphisme de F induit par f. Alors

- χ_{f_F} divise χ_f ;
- μ_{f_F} divise μ_f .

Le théorème de CAYLEY-HAMILTON

Théorème de Cayley-Hamilton)

- Soient E un K-espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. Alors $\chi_f(f) = 0$.
- Soit $A \in \mathscr{M}_n(\mathbb{K})$. Alors $\chi_A(A) = 0$.

ou aussi

- Soient E un K-espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. Alors μ_f divise χ_f .
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors μ_A divise χ_A .

Polynômes annulateurs et valeurs propres

Théorème.

- Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. Soient $x \in E$ et $\lambda \in \mathbb{K}$ tels que $f(x) = \lambda x$. Alors, pour tout $P \in \mathbb{K}[X]$, $P(f)(x) = P(\lambda)x$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient $X \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ tels que $AX = \lambda X$. Alors, pour tout $P \in \mathbb{K}[X]$, $P(A)X = P(\lambda)X$.

Théorème.

- Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. Soit $P \in \mathbb{K}[X]$ un polynôme annulateur de f. Alors, pour toute valeur propre λ de f, on a $P(\lambda) = 0$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit $P \in \mathbb{K}[X]$ un polynôme annulateur de A. Alors, pour toute valeur propre λ de A, on a $P(\lambda) = 0$.

On retiendra

les valeurs propres d'un endomorphisme ou d'une matrice sont à choisir parmi les racines d'un polynôme annulateur.

Théorème.

• Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. On suppose que χ_f est scindé sur \mathbb{K} et s'écrit donc

$$\chi_f = \prod_{i=1}^p \left(X - \lambda_i \right)^{\alpha_i}$$

où les λ_i sont les valeurs propres deux à deux distinctes de f et les α_i sont des entiers naturels non nuls. Alors μ_f s'écrit

$$\mu_f = \prod_{i=1}^p (X - \lambda_i)^{\beta_i}$$

où pour tout $i \in [1,p], 1 \leqslant \beta_i \leqslant \alpha_i$.

 \bullet Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que χ_A est scindé sur \mathbb{K} et s'écrit donc

$$\chi_{A} = \prod_{i=1}^{p} (X - \lambda_{i})^{\alpha_{i}}$$

où les λ_i sont les valeurs propres deux à deux distinctes de A et les α_i sont des entiers naturels non nuls. Alors μ_A s'écrit

$$\mu_A = \prod_{i=1}^p (X - \lambda_i)^{\beta_i}$$

où pour tout $i \in [1,p]$, $1 \leqslant \beta_i \leqslant \alpha_i$.

Le théorème de décomposition des noyaux

Théorème.

• Soient E un K-espace vectoriel puis $f \in \mathcal{L}(E)$. Soient P et Q deux polynômes **premiers entre eux**.

$$\operatorname{Ker}((P \times Q)(f)) = \operatorname{Ker}(P(f)) \oplus \operatorname{Ker}(Q(f)).$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient P et Q deux polynômes **premiers entre eux**.

$$\operatorname{Ker}((P \times Q)(A)) = \operatorname{Ker}(P(A)) \oplus \operatorname{Ker}(Q(A)).$$

Plus généralement,

• Soient E un K-espace vectoriel puis $f \in \mathcal{L}(E)$. Soient P_1, \ldots, P_k des polynômes deux à deux premiers entre eux.

$$\operatorname{Ker}((P_1 \times \ldots \times P_k)(f)) = \operatorname{Ker}(P_1(f)) \oplus \ldots \oplus \operatorname{Ker}(P_k(f)).$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient P_1, \ldots, P_k des polynômes deux à deux premiers entre eux.

$$\operatorname{Ker}\left((P_1\times\ldots\times P_k)(A)\right)=\operatorname{Ker}\left(P_1(A)\right)\oplus\ldots\oplus\operatorname{Ker}(P_k(A)).$$

Théorème.

• Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. Soient P_1, \ldots, P_k des polynômes **deux à deux premiers entre eux** puis $P = P_1 \times \ldots \times P_k$. On suppose de plus que P est annulateur de f.

$$E = Ker(P_1(f)) \oplus ... \oplus Ker(P_k(f)).$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient P_1, \ldots, P_k des polynômes **deux à deux premiers entre eux** puis $P = P_1 \times \ldots \times P_k$. On suppose de plus que P est annulateur de A.

$$\mathcal{M}_{n,1}(\mathbb{K}) = \operatorname{Ker}(P_1(A)) \oplus \ldots \oplus \operatorname{Ker}(P_k(A)).$$

Une caractérisation de la diagonalisabilité

Théorème.

- Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. f est diagonalisable si et seulement si il existe un polynôme P non nul, scindé sur \mathbb{K} à racines simples tel que P(f) = 0.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$.

 $A \ {\rm est \ diagonalisable \ si \ et \ seulement \ si \ il \ existe \ un \ polynôme \ P \ non \ nul, \ scind\'e \ sur \ \mathbb{K} \ \grave{a} \ racines \ simples \ tel \ que \ P(A) = 0.}$

ou aussi

- Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. f est diagonalisable si et seulement si μ_f est scindé sur \mathbb{K} à racines simples.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$.

A est diagonalisable si et seulement si il existe μ_A est scindé sur \mathbb{K} à racines simples.

On résume les différentes conditions nécessaires et suffisantes ou simplement suffisantes de diagonalisabilité ou de trigonalisabilité pour un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie non nulle. Dans ce qui suit, \mathfrak{n} est la dimension de \mathbb{E} , les α_i sont les ordres de multiplicité des valeurs propres et les \mathfrak{n}_i sont les dimensions des sous-espaces propres associés.

f est diagonalisable

- \Leftrightarrow il existe une base ${\mathscr B}$ de E constituée de vecteurs propres de f
- \Leftrightarrow il existe une base de E telle que $\operatorname{Mat}_{\mathcal{B}}(f)$ est diagonale
- ⇔ E est somme directe des sous-espaces propres de f

$$\Leftrightarrow n = \sum_{i=1}^{p} n_i$$

- $\Leftrightarrow \chi_f \text{ est scind\'e sur } \mathbb{K} \text{ et } \forall i \in [\![1,p]\!], \, n_i = \alpha_i.$
- \Leftrightarrow il existe un polynôme P non nul, scindé sur \mathbb{K} , à racines simples tel que P(f) = 0
- $\Leftrightarrow \mu_f$ est scindé sur $\mathbb K$ à racines simples
- \Leftarrow f a n valeurs propres simples ou encore χ_f est scindé sur \mathbb{K} à racines simples

D'autre part,

 $f \ {\rm est \ trigonalisable} \Leftrightarrow \chi_f \ {\rm est \ scind\acute{e} \ sur} \ \mathbb{K}.$